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1 Introduction

Gravity theories on D = 4 twisted spaces have been constructed in the past in the context

of particular quantum groups [1] and more recently in the twisted noncommutative geome-

try setting [2–4]. In this setting the deformed theory is invariant under ⋆-diffeomorphisms,

but in [3] no gauge invariance on the tangent space (generalizing local Lorentz symmetry) is

incorporated, and therefore coupling to fermions could not be implemented. A local symme-

try, enlarging the local SO(3, 1) symmetry of D = 4 Einstein gravity to GL(2, C), has been

considered in the approach of Chamseddine [2]. The resulting theory has a complicated

classical limit, with two vielbeins (or, equivalently, a complex vielbein). Noncommutative

gravities in lower dimensions have been studied in [5] (D=2) and in [6, 7] (D=3).

In [8] we have proposed a noncommutative gravity, coupled to fermions, and reducing

in the commutative limit to ordinary gravity + fermions, without extra fields (in partic-

ular without an extra graviton). This is achieved by imposing a noncommutative charge

conjugation condition on the bosonic fields, consistent with the ⋆-gauge transformations.

One can also impose a noncommutative generalization of the Majorana condition on the

fermions, compatible with the ⋆-gauge transformations.

In this paper we present the noncommutative extensions of locally supersymmetric

D = 3 and D = 4 gravity theories. The noncommutativity is given by a ⋆-product as-

sociated to a very general class of twists. This ⋆-product can also be x-dependent. The

deformed supergravity actions are constructed with a cyclic integral. As a particular case

we obtain noncommutative supergravities where noncommutativity is realized with the

Moyal-Groenewald ⋆-product.

For D = 3 the situation is easier, since in three dimensions gravity becomes essentially

a Chern-Simons gauge theory. The noncommutative extension of a particular AdS(3)

supergravity in three dimensions has been studied in [9].

Here we discuss D = 3, N = 1 supergravity without cosmological term. The noncom-

mutative geometric action is constructed directly by generalizing the usual D = 3 super-

gravity action, without reference to the Chern-Simons action. The noncommutative theory

is invariant under diffeomorphisms, local U(1, 1) ⋆-gauge symmetry and ⋆-supersymmetry.

We then propose an action for a noncommutative deformation of D = 4, N = 1 super-

gravity, invariant under diffeomorphisms and local GL(2, C) ⋆-gauge transformations, but

without ⋆-supersymmetry. In this case noncommutativity breaks the local supersymmetry

of the commutative theory. The commutative θ → 0 limit is the usual D = 4, N = 1

simple supergravity, with a Majorana gravitino.

We can obtain local ⋆-supersymmetry invariance of the noncommutative action if we

impose a Weyl condition on the fermions, rather than a Majorana condition. This leads to

a noncommutative supergravity whose θ → 0 limit is a chiral D = 4, N = 1 supergravity

with two vierbein fields (or a complex vierbein) and a left-handed gravitino.

The paper is organized as follows. In section 2 we discuss three dimensional non-

commutative simple supergravity, in first order formalism. In section 3 we present the

index-free formulation of usual D = 4, N = 1 supergravity, exploiting the Clifford algebra

representation of boson fields, thus preparing the ground for its noncommutative extension.
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In this setting the supersymmetry of the action becomes quite easy to prove. In section

4 we consider noncommutative first order D = 4, N = 1 supergravity, and prove its local

⋆-invariances. Section 5 contains some conclusions. In appendix A we collect a few useful

results of twist differential geometry. Conventions, D = 3 and D = 4 gamma matrices

properties are summarized in appendices B and C.

2 Noncommutative D = 3, N = 1 supergravity

2.1 Action

Using the ∗-exterior product of twist differential geometry (see appendix A), we extend

the usual action of D = 3, N = 1 supergravity to its noncommutative version. In index-

free notation:

S = −2

∫

Tr
[

R(Ω) ∧⋆ V + iρ ∧⋆ ψ̄
]

(2.1)

The fundamental fields are the 1-forms Ω (spin connection), V (vielbein) and gravitino ψ.

The curvature 2-form R and the gravitino curvature ρ are defined by

R = dΩ − Ω ∧⋆ Ω, ρ ≡ Dψ = dψ − Ω ∧⋆ ψ (2.2)

with

Ω =
1

4
ωabγab + iω1, V = V aγa + iv1 (2.3)

and thus are 2 × 2 matrices with spinor indices, see appendix B for D = 3 gamma matrix

conventions and useful relations. The Dirac conjugate is defined as usual: ψ̄ = ψ†γ0. Then

(Dψ) ∧⋆ ψ̄ is also a matrix in the spinor representation, and the trace Tr is taken on this

representation. Using the D = 3 gamma matrix identity:

Tr(γaγbγc) = −2εabc (2.4)

allows to rewrite the action in terms of component fields:

S =

∫

Rab ∧⋆ V
cεabc + 4r ∧⋆ v + 2iψ̄ ∧⋆ ρ (2.5)

with

R ≡
1

4
Rabγab + ir1, (2.6)

and

Rab = dωab −
1

2
ωa

c ∧⋆ ω
cb +

1

2
ωb

c ∧⋆ ω
ca − i(ωab ∧⋆ ω + ω ∧⋆ ω

ab), (2.7)

r = dω − iω ∧⋆ ω −
i

8
ωab ∧⋆ ωab (2.8)

– 3 –



J
H
E
P
0
6
(
2
0
0
9
)
0
8
7

2.2 Hermiticity conditions and reality of the action

Hermiticity conditions can be imposed on V and Ω:

γ0V γ0 = V †, γ0Ωγ0 = Ω† (2.9)

Moreover it is easy to verify that:

γ0Rγ0 = R†, γ0[ρ ∧⋆ ψ̄]γ0 = [ψ ∧⋆ ρ̄]
† (2.10)

with

ρ̄ = dψ̄ − ψ̄ ∧⋆ Ω (2.11)

Note also that up to boundary terms
∫

Tr[ρ ∧⋆ ψ̄] =

∫

Tr[ψ ∧⋆ ρ̄] = −

∫

ψ̄ ∧⋆ ρ = −

∫

ρ̄ ∧⋆ ψ (2.12)

where we have used the cyclicity of Tr and the graded cyclicity of the integral. For example

the first equality holds because
∫

Tr[ρ ∧⋆ ψ̄] =

∫

Tr[d(ψ ∧⋆ ψ̄) + ψ ∧⋆ ρ̄] (2.13)

These formulae can be used to check that the action (2.1) is real.

The hermiticity conditions (2.9) imply that the component fields V a, v, ωab, ω are real.

2.3 Field equations

Using the cyclicity of Tr and the graded cyclicity of the integral in (2.1), the variation of

V , Ω and ψ̄ yield respectively the noncommutative Einstein equation, torsion equation

and gravitino equation in index-free form:

R = 0 (2.14)

dV − Ω ∧⋆ V − V ∧⋆ Ω − iψ ∧⋆ ψ̄ = 0 (2.15)

ρ = 0 (2.16)

The noncommutative torsion two-form is defined by:

T ≡ T aγa + it1 ≡ dV − Ω ∧⋆ V − V ∧⋆ Ω (2.17)

or, in component fields:

T a = dV a −
1

2

(

ωa
b ∧⋆ V

b − V b ∧⋆ ω
a
b

)

+
i

4
ǫabc (ωbc ∧⋆ v + v ∧⋆ ωbc)

−i (ω ∧⋆ V
a + V a ∧⋆ ω) (2.18)

t = dv −
i

4
ǫabc

(

ωab ∧⋆ V
c + V c ∧⋆ ω

ab
)

− iω ∧⋆ v − iv ∧⋆ ω (2.19)

The torsion equation T = iψ ∧⋆ ψ̄ (2.15) yields:

T a =
i

2
Tr(ψ ∧⋆ ψ̄γ

a), t =
1

2
Tr(ψ ∧⋆ ψ̄) (2.20)

– 4 –
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2.4 Bianchi identities

From their definition, the curvatures R, ρ and the torsion T satisfy the identities

dR = −R ∧⋆ Ω + Ω ∧⋆ R (2.21)

dρ = −R ∧⋆ ψ + Ω ∧⋆ ρ (2.22)

dT = Ω ∧⋆ T − T ∧⋆ Ω −R ∧⋆ V + V ∧⋆ R (2.23)

The terms on right-hand sides with the spin connection Ω reconstruct covariant derivatives

on curvatures and torsion, so that the identities take the form

DR = 0, Dρ = −R ∧⋆ ψ, DT = −R ∧⋆ V + V ∧⋆ R (2.24)

2.5 Invariances

The action (2.1) is invariant under:

i) Diffeomorphisms: generated by the usual Lie derivative. Indeed the action is the

integral of a 3-form on a 3-manifold,1

∫

Lv(3-form) =

∫

(ivd+ div)(3-form) =

∫

d(iv(3-form)) = boundary term (2.25)

since d(3-form) = 0 on a 3-dimensional manifold. We have constructed a geometric

lagrangian where the fields are exterior forms and the ⋆-product is given by the Lie

derivative action of the twist on forms. The twist F in general is not invariant under

the diffeomorphism Lv. However we can consider the ⋆-diffeomorphisms of ref. [3] (see

also [14], section 8.2.4), generated by the ⋆-Lie derivative. This latter acts trivially

on the twist F but satisfies a deformed Leibniz rule. ⋆-Lie derivatives generate

infinitesimal noncommutative diffeomorphisms and leave invariant the action and

the twist. They are noncommutative symmetries of our action.

Finally in our geometric action no coordinate indices µ, ν appear, and this implies

invariance of the action under (undeformed) general coordinate transformations.2

Otherwise stated every contravariant tensor index µ is contracted with the corre-

sponding covariant tensor index µ, for example Xa = Xµ
a ∂µ and V a = V a

µ dx
µ.

ii) Local SO(1, 2) × U(1) ≈ U(1, 1) variations:

δǫV = −V ⋆ ǫ+ ǫ ⋆ V, δǫΩ = dǫ−Ω ⋆ ǫ+ ǫ ⋆Ω, δǫψ = ǫ ⋆ψ, δǫψ̄ = −ψ̄ ⋆ ǫ (2.26)

1In order to show that the integrand is a globally defined 3-form we need to assume that the vielbein

one-form V a is globally defined (and therefore that the manifold is parallelizable), the twisted exterior

product being globally defined (because the twist is globally defined). If this is the case, then due to the

local SO(1, 2) × U(1) invariance (see point ii) below) the action is independent of the vielbein used. On

the other hand, if the vielbein V a is only locally defined in open coverings of the manifold, then we cannot

construct a global 3-form, since the local SO(1, 2) × U(1) invariance holds only under integration.
2General coordinate transformations are diffeomorphisms of an open coordinate neighbourhood of the

manifold, not of the whole manifold.
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with

ǫ =
1

4
εabγab + iε1 (2.27)

satisfying the hermiticity condition:

γ0ǫγ0 = ǫ† (2.28)

This condition implies reality of the component gauge parameters εab, ε.

The invariance of (2.1) can be easily checked noting that

δǫR = −R ⋆ ǫ+ ǫ ⋆ R, δǫρ = ǫ ⋆ ρ, δǫ(ρ ∧⋆ ψ̄) = −ρ ∧⋆ ψ̄ ⋆ ǫ+ ǫ ⋆ ρ ∧⋆ ψ̄ (2.29)

and using the cyclicity of the trace Tr and the graded cyclicity of the integral.

iii) Local N=1 ⋆-supersymmetry variations:

δǫV = i(ǫ ⋆ ψ̄ − ψ ⋆ ǭ), δǫψ = dǫ− Ω ⋆ ǫ (2.30)

where now ǫ is a spinorial parameter. Notice that Ω is not varied: we are work-

ing in 1.5 - order formalism, i.e. we are considering Ω as already satisfying its own

equation of motion (2.15). Then the variation of the action due to the supersym-

metry variation of Ω vanishes, since it is proportional to the Ω field equation. The

variations (2.30) imply:

δǫψ̄ = dǭ+ ǭ ⋆ Ω, δǫρ = −R ⋆ ǫ, δǫρ̄ = ǭ ⋆ R (2.31)

The action varies as:

δǫS = −2i

∫

Tr[R ∧⋆ (−ψ ⋆ ǭ+ ǫ ⋆ ψ̄) + (−R ⋆ ǫ) ∧⋆ ψ̄ + ρ ∧⋆ (dǭ+ ǭ ⋆Ω)] (2.32)

After integrating by parts the term with dǭ, using the Bianchi identity for dρ (2.22)

and reordering the ρǭΩ term using the cyclicity of Tr and graded cyclicity of the

integral, all terms are seen to cancel. Thus the action (where Ω is resolved via

its equation of motion, i.e. in second order formalism) is invariant under the local

⋆-supersymmetry transformations (2.30), up to boundary terms.

On the component fields, the U(1, 1) transformation rules are:

δǫV
a =

1

2
εab ⋆ V

b +
1

2
V b ⋆ εab +

i

4
ǫabc (v ⋆ εbc − εbc ⋆ v) + i (ε ⋆ V a − V a ⋆ ε)

δǫv = −
i

4
ǫabc

(

V a ⋆ εbc − εbc ⋆ V a
)

− i (v ⋆ ε− ε ⋆ v)

δǫω
ab = dεab + ωc[a ⋆ ε b]

c − εc[a ⋆ ω b]
c − i

(

ωab ⋆ ε− ε ⋆ ωab
)

− i
(

ω ⋆ εab − εab ⋆ ω
)

δǫω = −dǫ−
i

8

(

ωab ⋆ εab − εab ⋆ ωab

)

− i (ω ⋆ ε− ε ⋆ ω)

δǫψ =
1

4
εabγab ⋆ ψ + iε ⋆ ψ (2.33)

– 6 –
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and the supersymmetry variations are:

δǫV
a =

i

2
Tr(ǫ ⋆ ψ̄γa − ψ ⋆ ǭγa)

δǫv =
1

2
Tr(ǫ ⋆ ψ̄ − ψ ⋆ ǭ)

δǫψ = dǫ−
1

4
ωabγab ⋆ ǫ− iω ⋆ ǫ (2.34)

Finally, it is a straightforward exercise to check that the hermiticity conditions on the fields

and on the parameters are consistent with the ⋆-gauge and ⋆-supersymmetry variations.

2.6 Commutative limit θ → 0

In the commutative limit the action (2.5) reduces to

Sθ=0 =

∫

Rab ∧ V cεabc + 4r ∧ v + 2iψ̄ ∧ ρ (2.35)

with

Rab = dωab − ωa
c ∧ ω

cb, r = dω (2.36)

ρ = dψ −
1

4
ωabγab ∧ ψ − iω ∧ ψ (2.37)

The θ = 0 field equations imply, as in the noncommutative case, that all curvatures Rab, r, ρ

vanish. The θ = 0 torsion constraints become:

dV a − ωa
b ∧ V

b =
i

2
ψ̄γa ∧ ψ, dv =

1

2
ψ̄ ∧ ψ (2.38)

The term r ∧ v = dω ∧ v in the action (2.35) can be integrated by parts. Using now

the second torsion constraint dv can be substituted by (1/2)(ψ̄ ∧ ψ), and the whole term

exactly cancels the ψ̄ωψ term coming from the third term in (2.35). Thus the θ = 0

action becomes

Sθ=0 =

∫

Rab ∧ V cεabc + 2iψ̄ ∧

(

dψ −
1

4
ωabγab ∧ ψ

)

(2.39)

and does not contain any more the fields ω and v. In fact it coincides with the usual D = 3

pure supergravity action, involving only the dreibein V a and the gravitino ψ. One can

at this point use also the first torsion constraint to express ωab in terms of the dreibein,

retrieving the classical action in second order formalism.

Note: the second torsion constraint in (2.38) implies that ψ̄ ∧ ψ must be closed, which

is true on-shell since d(ψ̄ ∧ ψ) = ρ̄ ∧ ψ − ψ̄ ∧ ρ.

3 Classical D = 4, N = 1 supergravity

The D = 4, N = 1 simple supergravity action can be written in index-free notation

as follows:

S =

∫

Tr
[

iR(Ω) ∧ V ∧ V γ5 − 2(ρ ∧ ψ̄ + ψ ∧ ρ̄) ∧ V γ5

]

(3.1)

– 7 –
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The fundamental fields are the 1-forms Ω (spin connection), V (vielbein) and gravitino ψ.

The curvature 2-form R and the gravitino curvature ρ are defined by

R = dΩ − Ω ∧ Ω, ρ ≡ Dψ = dψ − Ωψ, ρ̄ = Dψ̄ = dψ̄ − ψ̄ ∧ Ω (3.2)

with

Ω =
1

4
ωabγab, V = V aγa (3.3)

and thus are 4× 4 matrices with spinor indices. See appendix C for D = 4 gamma matrix

conventions and useful relations. The Dirac conjugate is defined as usual: ψ̄ = ψ†γ0. Then

also ρ ∧ ψ̄ and ψ ∧ ρ̄ are matrices in the spinor representation, and the trace Tr is taken

on this representation. The gravitino field satisfies the Majorana condition:

ψ†γ0 = ψTC (3.4)

where C is the D = 4 charge conjugation matrix, antisymmetric and squaring to −1.

Using the D = 4 gamma matrix trace identity:

Tr(γabγcγdγ5) = −4iεabcd (3.5)

leads to the usual supergravity action in terms of the component fields V a, ωab:

S =

∫

Rab ∧ V c ∧ V dεabcd − 4ψ̄ ∧ γ5γaρ ∧ V
a (3.6)

with

R ≡
1

4
Rabγab, Rab = dωab − ωa

c ∧ ω
cb (3.7)

We have also used

ρ̄γ5γaψ = ψ̄γ5γaρ (3.8)

due to ψ and ρ being Majorana spinors.3

3.1 Field equations and Bianchi identities

Using the cyclicity of the Tr in the action (3.1), the variation on V , Ω and ψ yield respec-

tively the Einstein equation, the torsion equation and the gravitino equation in index-free

form:

Tr
[

γaγ5

(

−iV ∧R− iR ∧ V + 2
(

ρ ∧ ψ̄ + ψ ∧ ρ̄
))]

= 0 (3.9)

Tr
[

γabγ5

(

iT ∧ V − iV ∧ T + 2ψ ∧ ψ̄ ∧ V − 2V ∧ ψ ∧ ψ̄
)]

= 0 (3.10)

V ∧Dψ = 0 (3.11)

where the torsion T = T aγa is defined as:

T ≡ dV − Ω ∧ V − V ∧ Ω (3.12)

3Then the two addends in the fermionic part of the action (3.1) are equal, so that we could have used

only one of them, with factor −4. However in the noncommutative extension both will be necessary.

– 8 –
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The solution of the torsion equation (3.10) is given by:

T = i[ψ ∧ ψ̄, γ5]γ5 = iψ ∧ ψ̄ − iγ5ψ ∧ ψ̄γ5 (3.13)

Upon use of the Fierz identity for Majorana spinor one-forms:

ψ ∧ ψ̄ =
1

4
γaψ̄γ

a ∧ ψ −
1

8
γabψ̄γ

ab ∧ ψ (3.14)

the torsion is seen to satisfy the familiar condition

T ≡ T aγa =
i

2
ψ̄γa ∧ ψγa (3.15)

Finally, the Bianchi identities for the curvatures and the torsion are:

dR = −R ∧ Ω + Ω ∧R (3.16)

dρ = −R ∧ ψ + Ω ∧ ρ, dρ̄ = ψ̄ ∧R− ρ̄ ∧ Ω (3.17)

dT = −R ∧ V + Ω ∧ T − T ∧ Ω + V ∧R (3.18)

The terms with the spin connection Ω reconstruct covariant derivatives of the curvatures

and the torsion.

3.2 Invariances

We know that the classical supergravity action (3.6) is invariant under general coordinate

transformations, under local Lorentz rotations and under local supersymmetry transfor-

mations. It is of interest to write the transformation rules of the fields in the index-free

notation, so as to verify the invariances directly on the index-free action (3.1).

Local Lorentz rotations

δǫV = −[V, ǫ], δǫΩ = dǫ− [Ω, ǫ], δǫψ = ǫψ, δǫψ̄ = −ψ̄ǫ (3.19)

with

ǫ =
1

4
εabγab (3.20)

The invariance can be directly checked on the action (3.1) noting that

δǫR = −[R, ǫ], δǫDψ = ǫDψ, δǫDψ̄ = −(Dψ̄)ǫ (3.21)

using the cyclicity of the trace Tr (on spinor indices) and the fact that ǫ commutes with

γ5. The Lorentz rotations close on the Lie algebra:

[δǫ1 , δǫ2 ] = δ[ǫ2,ǫ1] (3.22)

– 9 –
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Local supersymmetry. The supersymmetry variations are:

δǫV = i[ǫψ̄ − ψǭ, γ5]γ5, δǫψ = Dǫ ≡ dǫ− Ωǫ (3.23)

where now ǫ is a spinorial parameter (satisfying the Majorana condition). Notice that again

Ω is not varied since we work in 1.5 - order formalism, i.e. Ω satisfies its own equation of

motion (3.10).

The commutator of ǫψ̄−ψǭ with γ5 in the supersymmetry variation of V eliminates the

terms even in γa in the Fierz expansion of two generic anticommuting spinors (see appendix

C). Moreover, since ǫ and ψ are Majorana spinors, the combination ǫψ̄ − ψǭ ensures that

only the γa component survives. Then (3.23) reproduce the usual supersymmetry variations

(see below).

The variations (3.23) imply:

δǫψ̄ = Dǭ ≡ dǭ+ ǭΩ, δǫρ = −Rǫ, δǫρ̄ = ǭR (3.24)

Then the action varies as:

δǫS =

∫

2 Tr[R ∧ (ψǭ− ǫψ̄) ∧ V γ5 +R ∧ V ∧ (ψǭ− ǫψ̄)γ5] −

−2 Tr
[(

−Rǫ ∧ ψ̄ ∧ V + ρ ∧ (dǭ+ ǭΩ) ∧ V + (dǫ− Ωǫ) ∧ ρ̄ ∧ V + ψ ∧ ǭR ∧ V
)

γ5

]

+2i T r
[(

ρ ∧ ψ̄ + ψ ∧ ρ̄
) (

ψǭ− ǫψ̄
)

γ5 −
(

ρ ∧ ψ̄ + ψ ∧ ρ̄
)

γ5

(

ψǭ− ǫψ̄
)]

(3.25)

After integrating by parts the terms with dǫ and dǭ, and using the Bianchi identity (3.17)

for dρ the variation becomes:

δǫS =

∫

2 Tr
[

R ∧
(

ψǭ− ǫψ̄
)

∧ V γ5 +R ∧ V ∧
(

ψǭ− ǫψ̄
)

γ5

]

−

−2 Tr
[(

−Rǫ ∧ ψ̄ ∧ V + ρ ∧ ǭΩ ∧ V − Ωǫ ∧ ρ̄ ∧ V + ψ ∧ ǭR ∧ V +

+ (R ∧ ψ − Ω ∧ ρ) ǭ ∧ V − ρǭ ∧ (T + Ω ∧ V + V ∧ Ω) −

−ǫ
(

−ρ̄ ∧ Ω + ψ̄ ∧ ρ
)

∧ V − ǫρ̄ ∧ (T + Ω ∧ V + V ∧ Ω)
)

γ5

]

+

+2i T r
[(

ρ ∧ ψ̄ + ψ ∧ ρ̄
) (

ψǭ− ǫψ̄
)

γ5 −
(

ρ ∧ ψ̄ + ψ ∧ ρ̄
)

γ5

(

ψǭ− ǫψ̄
)]

(3.26)

where we have substituted dV by T + Ω ∧ V + V ∧ Ω (torsion definition). Using now the

cyclicity of Tr , and the fact that γ5 anticommutes with V and commutes with Ω, all terms

can be easily checked to cancel, except those containing the torsion T and the last line

(four-fermion terms).

Once we make use of the torsion equation ((3.13) to express T in terms of gravitino

fields, the variation reduces to:

δǫS = 2i

∫

Tr
[

ρǭ ∧
(

ψ ∧ ψ̄γ5 − γ5ψ ∧ ψ̄
)

+ ǫρ̄ ∧
(

ψ ∧ ψ̄γ5 − γ5ψ ∧ ψ̄
)

+
(

ρ ∧ ψ̄ + ψ ∧ ρ̄
)

∧
(

ψǭ− ǫψ̄
)

γ5 −
(

ρ ∧ ψ̄ + ψ ∧ ρ̄
)

∧ γ5

(

ψǭ− ǫψ̄
)

]

(3.27)

Finally, carrying out the trace on spinor indices results in

δǫS = 2i

∫

(ψ̄ǫ− ǭψ) ∧ (ψ̄γ5 ∧ ρ− ρ̄γ5 ∧ ψ) + (ψ̄ ∧ ρ− ρ̄ ∧ ψ) ∧ (ψ̄γ5ǫ− ǭγ5ψ)

+(ǭρ− ρ̄ǫ) ∧ (ψ̄γ5 ∧ ψ) + (ρ̄γ5ǫ− ǭγ5ρ) ∧ (ψ̄ ∧ ψ) (3.28)
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Each factor between parentheses vanishes, due to all spinors being Majorana spinors. This

proves the invariance of the classical supergravity action under the local supersymmetry

variations (3.23).

On the component fields, the Lorentz transformations (3.19) read:

δǫV
a = εabV

b

δǫω
ab = dεab + εacω b

c − εbcω a
c

δǫψ =
1

4
εabγabψ (3.29)

and the supersymmetry variations (3.23) become:

δǫV
a = iǭγaψ

δǫψ = dǫ−
1

4
ωabγabǫ (3.30)

4 Noncommutative D = 4, N = 1 supergravity

4.1 Action and GL(2, C) ⋆-gauge symmetry

A noncommutative generalization of the D = 4, N = 1 simple supergravity action is

obtained by replacing exterior products by ⋆-exterior products in (3.1):

S =

∫

Tr
[

iR(Ω) ∧⋆ V ∧⋆ V γ5 + 2(ρ ∧⋆ ψ̄ + ψ ∧⋆ ρ̄) ∧⋆ V γ5

]

(4.1)

where the curvature 2-form R and the gravitino curvature ρ are defined as:

R = dΩ − Ω ∧⋆ Ω, ρ ≡ Dψ = dψ − Ω ⋆ ψ (4.2)

Almost all formulae of the commutative case continue to hold, with ordinary products

replaced by ⋆-products and ⋆-exterior products. However, the expansion of the fundamental

fields on the Dirac basis of gamma matrices must now include new contributions; more

precisely the spin connection contains all even gamma matrices and the vielbein contains

all odd gamma matrices:

Ω =
1

4
ωabγab + iω1 + ω̃γ5, V = V aγa + Ṽ aγaγ5 (4.3)

The one-forms Ω and V are thus also 4 × 4 matrices with spinor indices. Similarly for

the curvature:

R =
1

4
Rabγab + ir1 + r̃γ5 (4.4)

and for the gauge parameter:

ǫ =
1

4
εabγab + iε1 + ε̃γ5 (4.5)

Indeed now the ⋆-gauge variations read:

δǫV = −V ⋆ ǫ+ ǫ ⋆ V, δǫΩ = dǫ− Ω ⋆ ǫ+ ǫ ⋆ Ω, δǫψ = ǫ ⋆ ψ, δǫψ̄ = −ψ̄ ⋆ ǫ (4.6)
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and in the variations for V and Ω also anticommutators of gamma matrices appear, due to

the noncommutativity of the ⋆-product. Since for example the anticommutator {γab, γcd}

contains 1 and γ5, we see that the corresponding fields must be included in the expansion

of Ω. Similarly, V must contain a γaγ5 term due to {γab, γc}. Finally, the composition law

for gauge parameters becomes:

[δǫ1 , δǫ2 ] = δǫ2⋆ǫ1−ǫ1⋆ǫ2 (4.7)

so that ǫ must contain the 1 and γ5 terms, since they appear in the composite parameter

ǫ2 ⋆ ǫ1 − ǫ1 ⋆ ǫ2.

The invariance of the noncommutative action (4.1) under the ⋆-gauge variations is

demonstrated in exactly the same way as for the commutative case, noting that

δǫR = −R⋆ǫ+ǫ⋆R, δǫDψ = ǫ⋆Dψ, δǫ((Dψ)∧⋆ ψ̄) = −(Dψ)∧⋆ ψ̄⋆ǫ+ǫ⋆(Dψ)∧⋆ ψ̄ (4.8)

and using now, besides the cyclicity of the trace Tr and the fact that ǫ still commutes with

γ5, also the graded cyclicity of the integral.

4.2 Local ⋆-supersymmetry

The ⋆-supersymmetry variations are obtained from the classical ones using ⋆-products:

δǫV = i[ǫ ⋆ ψ̄ − ψ ⋆ ǭ, γ5]γ5 δǫψ = dǫ− Ω ⋆ ǫ (4.9)

where ǫ is a spinorial parameter. Under these variations the noncommutative action varies

as given in (3.28), with ordinary products substituted with ⋆-products. Indeed the algebra

is identical, since γ5 still anticommutes with V and commutes with Ω, and we can use the

cyclicity of Tr and graded cyclicity of the integral.

The question is now: does this variation vanish? Classically it vanishes because of the

Majorana condition on the spinors (gravitino and supersymmetry gauge parameter). We

recall the noncommutative generalization of the Majorana condition, consistent with the

∗-gauge transformations [8]:

ψc
θ = ψ−θ, ψc ≡ C(ψ̄)T (4.10)

This condition involves the θ dependence of the fields,4 and is consistent with the ⋆-gauge

transformations only if the gauge parameter satisfies the charge conjugation condition [8]:

CǫθC = ǫT−θ (4.11)

The NC Majorana condition (4.10) is consistent also with ⋆-supersymmetry transformations

if the supersymmetry parameter is Majorana, and the bosonic fields satisfy the charge

conjugation conditions

CΩθC = ΩT
−θ, CVθC = V T

−θ (4.12)

4The fields can be formally expanded in powers of θ: in principle this picture would introduce infinitely

many fields, one for each power of θ. However the Seiberg-Witten map [10, 11] can be used to express all

fields in terms of the classical one, ending up with a finite number of fields.
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Now consider the first term in the supersymmetry variation of the action (for the other

three terms the reasoning is identical):

2i

∫

(ψ̄ ⋆ ǫ− ǭ ⋆ ψ) ∧⋆ (ψ̄γ5 ∧⋆ ρ− ρ̄γ5 ∧⋆ ψ) (4.13)

If ψ and ǫ are noncommutative Majorana fermions, they satisfy the relations:

ψ̄ ⋆ ǫ = ǭ−θ ⋆−θ ψ−θ, ψ̄γ5 ∧⋆ ρ = ρ̄−θγ5 ∧−θ ψ−θ (4.14)

and one sees that (4.13) does not vanish anymore (although it vanishes in the commutative

limit). Thus the NC Majorana condition does not ensure the local ⋆-supersymmetry in-

variance of the action in (4.1). In fact, the local supersymmetry of the commutative action

is broken by noncommutativity.

There is another condition that we can impose on fermi fields, the Weyl condition, still

consistent with the ⋆-symmetry structure of the action:

γ5ψ = ψ, γ5ǫ = ǫ (4.15)

i.e. all fermions are left-handed (so that their Dirac conjugates ψ̄ and ǭ are right-handed). In

this case the local ⋆-supersymmetry variation vanishes because in all the fermion bilinears

the γ5 matrices can be omitted, and the product of a right-handed spinor with a left-handed

spinor vanishes. Thus the noncommutative supergravity action (4.1) with Weyl fermions

is locally supersymmetric.

Note that now we cannot impose the charge conjugation relations (4.12) on the bosonic

fields : indeed ⋆-supersymmetry links together these relations with the NC Majorana con-

dition, which is not compatible in D = 4 with the Weyl condition (as in the classical case).

The θ → 0 limit of this chiral noncommutative theory is a complex version of the

so-called D = 4, N = 1 Weyl supergravity and is discussed in section 4.6 below.

4.3 Hermiticity conditions and reality of the action

Hermiticity conditions can be imposed on V , Ω and the gauge parameter ǫ:

γ0V γ0 = V †, − γ0Ωγ0 = Ω†, − γ0ǫγ0 = ǫ† (4.16)

Moreover it is easy to verify that:

γ0[ρ ∧⋆ ψ̄]γ0 = [ψ ∧⋆ ρ̄]
† (4.17)

These conditions are consistent with the ⋆-gauge and ⋆-supersymmetry variations (both

for Majorana and chiral fermions), as in the commutative case, and can be used to check

that the action (4.1) is real. The hermiticity conditions imply that the component fields

V a, Ṽ a, ωab, ω, and ω̃, and gauge parameters εab, ε, and ε̃ are real fields.

4.4 Component analysis

Here we list the ⋆-gauge and supersymmetry variations of the component fields. In the

supersymmetry variations we consider both Majorana and Weyl fermions.
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4.4.1 ⋆-Gauge variations

δǫV
a =

1

2

(

εab ⋆ V
b + V b ⋆ εab

)

+
i

4
εabcd

(

Ṽ b ⋆ εcd − εcd ⋆ Ṽ b
)

+ε ⋆ V a − V a ⋆ ε− ε̃ ⋆ Ṽ a − Ṽ a ⋆ ε̃ (4.18)

δǫṼ
a =

1

2

(

εab ⋆ Ṽ
b + Ṽ b ⋆ εab

)

+
i

4
εabcd

(

V b ⋆ εcd − εcd ⋆ V b
)

+ε ⋆ Ṽ a − Ṽ a ⋆ ε− ε̃ ⋆ V a − V a ⋆ ε̃ (4.19)

δǫω
ab =

1

2

(

εac ⋆ ω
cb − εbc ⋆ ω

ca + ωcb ⋆ εac − ωca ⋆ εbc

)

+
1

4

(

εab ⋆ ω − ω ⋆ εab
)

+
i

8
εab

cd

(

εcd ⋆ ω̃ − ω̃ ⋆ εcd
)

+
1

4

(

ε ⋆ ωab − ωab ⋆ ε
)

+
i

8
εab

cd

(

ε̃ ⋆ ωcd − ωcd ⋆ ε̃
)

(4.20)

δǫω =
1

8

(

ωab ⋆ εab − εab ⋆ ω
ab
)

+ ε ⋆ ω − ω ⋆ ε+ ε̃ ⋆ ω̃ − ω̃ ⋆ ε̃ (4.21)

δǫω̃ =
i

16
εabcd

(

ωab ⋆ εcd − εcd ⋆ ωab
)

+ ε ⋆ ω̃ − ω̃ ⋆ ε+ ε̃ ⋆ ω − ω ⋆ ε̃ (4.22)

4.4.2 Supersymmetry variations: Majorana fermions

δǫV
a =

i

2
Tr[(ǫ ⋆ ψ̄ − ψ ⋆ ǭ)γa] (4.23)

δǫṼ
a =

i

2
Tr[(ǫ ⋆ ψ̄ − ψ ⋆ ǭ)γaγ5] (4.24)

δǫψ = dǫ−
1

4
ωabγabǫ− (iω + ω̃γ5)ǫ (4.25)

4.4.3 Supersymmetry variations: Weyl fermions

δǫV
a = δǫṼ

a =
i

2
Tr[(ǫ ⋆ ψ̄ − ψ ⋆ ǭ)γa] (4.26)

δǫψ = dǫ−
1

4
ωabγabǫ− (iω + ω̃)ǫ (4.27)

4.4.4 Charge conjugation conditions

The charge conjugation relations (4.12) imply for the component fields:

V a
θ = V a

−θ, ωab
θ = ωab

−θ (4.28)

Ṽ a
θ = −Ṽ a

−θ, ωθ = −ω−θ, ω̃θ = −ω̃−θ, (4.29)

and for the gauge parameters:

εab
θ = εab

−θ (4.30)

εθ = −ε−θ, ε̃θ = −ε̃−θ (4.31)
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4.5 Field equations and Bianchi identities

Using the cyclicity of the integral and of the Tr in the action (4.1), the variation on V ,

Ω and ψ yield respectively the Einstein equation, the torsion equation and the gravitino

equation in index-free form:

Tr[Γa,a5(−iV ∧⋆ R− iR ∧⋆ V + 2(ρ ∧⋆ ψ̄ + ψ ∧⋆ ρ̄)] = 0 (4.32)

Tr[Γab,1,5(iT ∧⋆ V − iV ∧⋆ T + 2ψ ∧⋆ ψ̄ ∧ V − 2V ∧⋆ ψ ∧⋆ ψ̄)] = 0 (4.33)

V ∧⋆ Dψ −
1

2
T ∧⋆ ψ = 0 (4.34)

where Γab,1,5 indicates γab, 1 and γ5 (thus there are three distinct equations) and likewise

for Γa,a5 (two equations corresponding to γa and γaγ5). The torsion T = T aγa + T̃ aγaγ5 is

defined as:

T ≡ dV − Ω ∧⋆ V − V ∧⋆ Ω (4.35)

The torsion equation can be written as:

[iT ∧⋆ V − iV ∧⋆ T + 2ψ ∧⋆ ψ̄ ∧⋆ V − 2V ∧⋆ ψ ∧⋆ ψ̄, γ5] = 0 (4.36)

since the anticommutator with γ5 selects the γab, 1 and γ5 components. This equation can

be solved for the torsion:

T = i[ψ ∧⋆ ψ̄, γ5]γ5 = iψ ∧⋆ ψ̄ − iγ5ψ ∧⋆ ψ̄γ5 (4.37)

For chiral gravitini:

T = 2iψ ∧⋆ ψ̄ (4.38)

The Bianchi identities for the curvatures and the torsion are obtained from the com-

mutative ones simply by replacing exterior products by ⋆-exterior products.

4.6 Commutative limit

The nonsupersymmetric NC theory with NC Majorana gravitino, and charge conjugation

conditions (4.12), reduces in the θ → 0 limit to the usual D = 4, N = 1 supergravity.

Indeed the charge conjugation conditions on V and Ω imply that the component fields Ṽ a,

ω, and ω̃ all vanish in the limit θ → 0 (see the second line of (4.29)), and only the classical

spin connection ωab, vierbein V a and Majorana fermion ψ survive. Similarly the gauge

parameters ε, and ε̃ vanish in the commutative limit.

In the chiral case, the extra vielbein Ṽ a cannot vanish in the commutative limit, since

its supersymmetry variation is equal to that of V a. Then one obtains a commutative

limit that is a (locally) supersymmetric version of gravity with a complex vielbein studied

by Chamseddine, or a bigravity-like theory (in our case a super-bigravity theory). For a

discussion on chiral supergravity see for ex. [12]. A detailed study of this commutative

limit will not be carried out in the present paper.
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4.7 The noncommutative supergravity action in terms of chiral fields

In the case of chiral fermions, it may be useful to reexpress the action in terms of chiral

bosonic and fermionic fields. Chiral bosonic fields can be defined in exactly the same way

as chiral fermionic fields, since V and Ω take values in the spinor representation (they are

Clifford algebra valued fields). Thus we’ll denote by V± and Ω± the projections

V± =
1

2
(1 ± γ5)V, Ω± =

1

2
(1 ± γ5)Ω (4.39)

Note that the spin connection ωab contained in Ω± is then (anti)self-dual.

The action (4.1) takes the form:

S =

∫

Tr[iR+ ∧⋆ V+ ∧⋆ V− − iR− ∧⋆ V− ∧⋆ V+ + 2(ρ ∧⋆ ψ̄ + ψ ∧⋆ ρ̄) ∧⋆ V−] (4.40)

with

R± = dΩ± − Ω± ∧⋆ Ω± (4.41)

The transformation rules and the field equations can all be rewritten in terms of the chiral

fields. For example under supersymmetry the “chiral vielbein” V± transform as:

δǫV+ = 2i(ǫ ⋆ ψ̄ − ψ ⋆ ǭ), δǫV− = 0 (4.42)

Similarly the torsion equation becomes:

T+ = 2iψ ∧⋆ ψ̄, T− = 0 (4.43)

5 Conclusions

The index-free notation, based on Clifford algebra expansion of the bosonic fields (see for ex.

ref.s [2, 12]), allows to study invariances with simple algebraic manipulations. This frame-

work is ideally suited to study noncommutative generalizations of field theories containing

gravity, cf. ref.s [2], where a complex noncommutative gravity was proposed. In ref. [8] we

showed that a NC gravity could be constructed, with a commutative limit coinciding with

the usual Einstein-Cartan theory. We proved that a NC charge conjugation condition on

the vierbein and on the spin connection yields a real vierbein in the commutative limit.

The theory was also coupled to (Majorana) fermion zero-forms (spin 1/2).

In this paper we have constructed noncommutative supergravities in D = 3 and D = 4.

The commutative limit of the D = 3 locally supersymmetric theory coincides with pure

supergravity (without cosmological term) in D = 3. The D = 4 model is less satisfactory:

if we use the NC Majorana condition for the gravitino, the action is not ⋆-supersymmetric.

However in this case we can impose charge conjugation conditions on the vierbein and

spin connection, so that the commutative limit of the theory reproduces usual D = 4,

N = 1 supergravity.

We recover ⋆-local supersymmetry of the action when the gravitino is chiral. In this

case we cannot impose the charge conjugation condition on the vierbein (because then
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⋆-supersymmetry requires the NC Majorana condition on the gravitino), and therefore the

commutative limit does not involve only one real vierbein, but reduces to a chiral D = 4,

N = 1 supergravity with a complex vierbein.

Note that the ⋆-products deformations considered in this paper are associated to a

very general triangular Drinfeld twist F , a particular case being the Groenewold-Moyal

⋆-product. In our general framework one could consider promoting the twist F itself to a

dynamical field, see [13] for an example in the flat case.

A Twist differential geometry

The noncommutative deformation of the gravity theories we constructed relies on the exis-

tence (in the deformation quantization context, see for ex [14] ) of an associative ⋆-product

between functions and more generally an associative ∧⋆ exterior product between forms

that satisfies the following properties:

• Compatibility with the undeformed exterior differential:

d(τ ∧⋆ τ
′) = d(τ) ∧⋆ τ

′ + (−1)deg(τ)τ ∧⋆ dτ
′ (A.1)

• Compatibility with the undeformed integral (graded cyclicity property):

∫

τ ∧⋆ τ
′ = (−1)deg(τ)deg(τ ′)

∫

τ ′ ∧⋆ τ (A.2)

with deg(τ)+deg(τ ′) =D=dimension of the spacetime manifold, and where here τ and

τ ′ have compact support (otherwise stated we require (A.2) to hold up to boundary

terms).

• Compatibility with the undeformed complex conjugation:

(τ ∧⋆ τ
′)∗ = (−1)deg(τ)deg(τ ′)τ ′∗ ∧⋆ τ

∗ (A.3)

We describe here a (quite wide) class of twists whose ⋆-products have all these properties.

In this way we have constructed a wide class of noncommutative deformations of gravity

theories. Of course as a particular case we have the Groenewold-Moyal ⋆-product

f ⋆ g = µ
{

e
i
2
θρσ∂ρ⊗∂σf ⊗ g

}

, (A.4)

where the map µ is the usual pointwise multiplication: µ(f⊗g) = fg, and θρσ is a constant

antisymmetric matrix.

Twist. Let Ξ be the linear space of smooth vector fields on a smooth manifold M ,

and UΞ its universal enveloping algebra. A twist F ∈ UΞ ⊗ UΞ defines the associative

twisted product

f ⋆ g = µ
{

F−1f ⊗ g
}

(A.5)
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where the map µ is the usual pointwise multiplication: µ(f⊗g) = fg. The product associa-

tivity relies on the defining properties of the twist [3, 14, 15]. Using the standard notation

F ≡ fα ⊗ fα, F−1 ≡ f
α
⊗ fα (A.6)

(sum over α understood) where fα, fα, f
α
, fα are elements of UΞ, the ⋆-product is expressed

in terms of ordinary products as:

f ⋆ g = f
α
(f)fα(g) (A.7)

Many explicit examples of twist are provided by the so-called abelian twists:

F = e−
i
2
θabXa⊗Xb (A.8)

where {Xa} is a set of mutually commuting vector fields globally defined on the manifold,5

and θab is a constant antisymmetric matrix. The corresponding ⋆-product is in general

position dependent because the vector fields Xa are in general x-dependent. In the special

case that there exists a global coordinate system on the manifold we can consider the vector

fields Xa = ∂
∂xa . In this instance we have the Moyal twist, cf. (A.4):

F−1 = e
i
2
θρσ∂ρ⊗∂σ (A.9)

Deformed exterior product. The deformed exterior product between forms is de-

fined as

τ ∧⋆ τ
′ ≡ f

α
(τ) ∧ fα(τ ′) (A.10)

where f
α

and fα act on forms via the Lie derivatives Lf
α , Lfα

(Lie derivatives along products

uv · · · of elements of Ξ are defined simply by Luv··· ≡ LuLv · · · ). This product is associative,

and in particular satisfies:

τ ∧⋆ h ⋆ τ
′ = τ ⋆ h∧⋆ τ

′, h ⋆ (τ ∧⋆ τ
′) = (h ⋆ τ)∧⋆ τ

′, (τ ∧⋆ τ
′) ⋆ h = τ ∧⋆ (τ ′ ⋆ h) (A.11)

where h is a 0-form, i.e. a function belonging to Fun(M), the ⋆-product between functions

and one-forms being just a particular case of (A.10):

h ⋆ τ = f
α
(h)fα(τ), τ ⋆ h = f

α
(τ)fα(h) (A.12)

Exterior derivative. The exterior derivative satisfies the usual (graded) Leibniz rule,

since it commutes with the Lie derivative:

d(f ⋆ g) = df ⋆ g + f ⋆ dg (A.13)

d(τ ∧⋆ τ
′) = dτ ∧⋆ τ

′ + (−1)deg(τ) τ ∧⋆ dτ
′ (A.14)

5We actually need only the twist F to be globally defined, not necessarily the single vector fields Xa.

An explicit example of this latter kind is given by the twist (A.8), that in an open neighbourhood with

coordinates t, x, y, z is defined by the commuting vector fields X1 = f(x, z) ∂
∂x

, X2 = h(y, z) ∂
∂y

, where f(x, z)

is a function of only the x and z variables and has compact support, and similarly h(y, z). This twist is

globally defined on the whole manifold by requiring it to be the identity 1 ⊗ 1 outside the {xa} coordinate

neighbourhood. The corresponding ⋆-product, defined on the whole spacetime manifold, is noncommutative

only inside this neighbourhood.
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Integration: graded cyclicity. If we consider an abelian twist (A.8) given by globally

defined commuting vector fields Xa, then the usual integral is cyclic under the ⋆-exterior

products of forms, i.e., up to boundary terms,
∫

τ ∧⋆ τ
′ = (−1)deg(τ)deg(τ ′)

∫

τ ′ ∧⋆ τ (A.15)

with deg(τ) + deg(τ ′) =D=dimension of the spacetime manifold. In fact we have
∫

τ ∧⋆ τ
′ =

∫

τ ∧ τ ′ = (−1)deg(τ)deg(τ ′)

∫

τ ′ ∧ τ = (−1)deg(τ)deg(τ ′)

∫

τ ′ ∧⋆ τ (A.16)

For example at first order in θ,
∫

τ ∧⋆ τ
′ =

∫

τ ∧τ ′−
i

2
θab

∫

LXa(τ ∧LXb
τ ′) =

∫

τ ∧τ ′−
i

2
θab

∫

diXa(τ ∧LXb
τ ′) (A.17)

where we used the Cartan formula LXa = diXa + iXad.

More generally if the twist F satisfies the condition S(f
α
)fα = 1, where the antipode S

is defined on vector fields as S(v) = −v and is extended to the whole universal enveloping

algebra UΞ linearly and antimultiplicatively, S(uv) = S(v)S(u), then a similar argument

proves the graded cyclicity of the integral.6

Complex conjugation. If we choose real fields Xa in the definition of the twist (A.8),

it is immediate to verify that:

(f ⋆ g)∗ = g∗ ⋆ f∗ (A.18)

(τ ∧⋆ τ
′)∗ = (−1)deg(τ)deg(τ ′)τ ′∗ ∧⋆ τ

∗ (A.19)

since sending i into −i in the twist (A.9) amounts to send θab into −θab = θba, i.e. to

exchange the order of the factors in the ⋆-product.

More in general we can consider twists F that satisfy the reality condition (cf. section

8 in [3] ) f
α∗

⊗ fα
∗

= S(fα) ⊗ S(f
α
). The ⋆-products associated to these twists satisfy

properties (A.18), (A.19).

B Gamma matrices in D = 3

We summarize in this appendix our gamma matrix conventions in D = 3.

γ0 =

(

i 0

0 −i

)

, γ1 =

(

0 1

1 0

)

, γ2 =

(

0 −i

i 0

)

(B.1)

ηab = (−1, 1, 1), {γa, γb} = 2ηab, [γa, γb] = 2γab = −2εabcγ
c, (B.2)

ε012 = −ε012 = 1, (B.3)

γ†a = γ0γaγ0 (B.4)

6Proof: using Sweedler’s coproduct notation we have (cf. footnote 3 in [8] that goes into details)

τ ∧⋆ τ
′ = f

α
(τ ) ∧ fα(τ ′) = f

α

1 (τ ∧ S(f
α

2 )fα(τ ′)) = τ ∧ S(f
α
)fα(τ ′) + f

α′

1(τ ∧ S(f
α′

2)fα(τ ′))

= τ ∧ τ
′ + total derivative

where ∆f
α
≡ f

α

1 ⊗ f
α

2 ≡ 1 ⊗ f
α

+ f
α′

1 ⊗ f
α′

2, and in the last equality we observe that each f
α′

1 contains at

least one vector field. Thus use of Cartan’s formula implies that the second addend is a total derivative.
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B.1 Useful identities

γaγb = γab + ηab = −εabcγ
c + ηab (B.5)

γabγc = ηbcγa − ηacγb − εabc (B.6)

γcγab = ηacγb − ηbcγa − εabc (B.7)

γaγbγc = ηabγc + ηbcγa − ηacγb − εabc (B.8)

γabγcd = −4δ
[a
[c γ

b]
d] − 2δab

cd (B.9)

where δab
cd = 1

2(δa
c δ

b
d−δ

a
dδ

b
c), and index antisymmetrizations in square brackets have weight 1.

C Gamma matrices in D = 4

We summarize in this appendix our gamma matrix conventions in D = 4.

ηab = (1,−1,−1,−1), {γa, γb} = 2ηab, [γa, γb] = 2γab, (C.1)

γ5 ≡ iγ0γ1γ2γ3, γ5γ5 = 1, ε0123 = −ε0123 = 1, (C.2)

γ†a = γ0γaγ0, γ†5 = γ5 (C.3)

γT
a = −CγaC

−1, γT
5 = Cγ5C

−1, C2 = −1, CT = −C (C.4)

C.1 Useful identities

γaγb = γab + ηab (C.5)

γabγ5 =
i

2
ǫabcdγ

cd (C.6)

γabγc = ηbcγa − ηacγb − iεabcdγ5γ
d (C.7)

γcγab = ηacγb − ηbcγa − iεabcdγ5γ
d (C.8)

γaγbγc = ηabγc + ηbcγa − ηacγb − iεabcdγ5γ
d (C.9)

γabγcd = −iεab
cdγ5 − 4δ

[a
[c
γ

b]
d]
− 2δab

cd (C.10)

C.2 Charge conjugation and Majorana condition

Dirac conjugate ψ̄ ≡ ψ†γ0 (C.11)

Charge conjugate spinor ψc = C(ψ̄)T (C.12)

Majorana spinor ψc = ψ ⇒ ψ̄ = ψTC (C.13)

C.3 Fierz identities for two spinor one-forms

ψ∧χ̄ =
1

4

[

(χ̄ ∧ ψ) 1 + (χ̄γ5 ∧ ψ) γ5 + (χ̄γa ∧ ψ) γa + (χ̄γaγ5 ∧ ψ) γaγ5 −
1

2

(

χ̄γab ∧ ψ
)

γab

]

(C.14)

Noncommutative Fierz identities.

ψ ∧⋆ χ̄ =
1

4

[

Tr (ψ ∧⋆ χ̄) 1 + Tr (ψγ5 ∧⋆ χ̄) γ5 + Tr (ψγa ∧⋆ χ̄) γa +

Tr (ψγaγ5 ∧⋆ χ̄) γaγ5 −
1

2
Tr
(

ψγab ∧⋆ χ̄
)

γab

]

(C.15)
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